PACKASSISTANT: FAST AND OPTIMAL CONTAINER LOAD PLANNING
Time-consuming packing attempts become a thing of the past
AT A GLANCE
Making the best use of container space can save both transportation and storage costs. One simply needs to find the right way to arrange the objects to be packed in the available container space. Experienced packing planners usually spend a lot of time meticulously arranging and packing parts with complex shapes but, nevertheless, they will not, in most cases, achieve the same packing density as realized with PackAssistant.

The PackAssistant software calculates the optimal packing arrangement of identical parts in standard containers by using 3D designs (CAD). This also works for parts with complex shapes, as the software will identify and take the individual shape of the object into account.

SAVING POTENTIAL
PackAssistant saves time and money through
- optimal container utilization
- avoiding time-consuming packing tests
- allowing early-stage transport, container and storage planning
- providing a key support tool for creation of quotes and tenders
SAVING POTENTIAL
PackAssistant saves time and money

Reduction of transport costs
PackAssistant users have improved the packing density of containers by up to 25 percent. This improvement also has a positive effect on other areas in the whole logistic chain: fewer containers means reduced storage space needed and lower transportation and handling costs.

Save time by improved planning
PackAssistant not only enables you to improve packing densities, but – by faster planning – it also helps you to save time.

On average, it takes PackAssistant 25 minutes to:
@ choose the best possible container
@ work out the optimal container load
@ produce a complete packing report incl. images.

How long do you take for all this?

X% lower container cost
X% lower storage cost
X% lower transportation cost
X% lower handling cost

Total of your cost savings?
SUCCESS STORIES

PackAssistant simplifies enormously the planning of logistics processes and the packing of industrial components

Audi AG
As a development partner for PackAssistant, Audi AG has been working with the software for many years and particularly benefits from the software’s rapid calculations in its co-operation with suppliers. The enormous potential savings that can be realized through optimal packing of parts in large quantities can be seen in the case of a rear light for an automobile:

<table>
<thead>
<tr>
<th>Supplier’s recommendation</th>
<th>PackAssistant’s calculation</th>
<th>Reduction in transportation costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 parts per container</td>
<td>45 parts per container</td>
<td>57 T € per year</td>
</tr>
</tbody>
</table>

KTM Power Sports AG
When setting up a production facility, the series production of the X-Bow sports car, KTM Power Sports AG used PackAssistant to plan container sizes and the optimal packing of 450 parts. Since neither real parts nor prototypes were available during the set-up phase, planning was carried out using CAD data for the parts. Strategic planning for the containers revolved around the future logistics processes, flow of materials and the production cycle within the plant.

With PackAssistant it was possible to shorten the times for planning and implementation of new containers by more than 50 percent: compared with the industry standard of nine to twelve months, using PackAssistant KTM needed just four months. PackAssistant enabled a comparison of different packing types and container models. This way, planners could generate a concept for each individual part before developing standard containers and special containers for each. The KTM planners were able to create a concept for each individual part and an overall plan for the use of both standard and specialized containers.
“If you look at the whole logistics chain the container is just the beginning. Storage space can be saved and fewer delivery cycles are needed to satisfy customer needs.”
Marco Rosensprung, GEDIA GmbH

“This software makes many things easier since we no longer need samples, but can immediately carry out packing tests using the existing CAD datasets.”
Thorsten Henschel, Audi AG

“Only with a technology such as that offered by PackAssistant were we able to complete an optimal container planning for all 450 parts and define standardized containers.”
Franco Lanzoni, KTM Power Sports AG
ONE SOFTWARE – MANY OPTIONS

PackAssistant enables the user to handle different types of packaging explained in the following sections. In addition, parameters for customer-specific packing solutions are available:

- Possibility to select the minimum distance between parts, the container base and walls, compartments.
- Adherence to the maximum load of the container.
- In order to facilitate the stability of the container, it is possible to define stable positions for the parts.
- Compute the minimum volume box of a single part.
- Automatic choice of an appropriate container from a list.

LOADING WITH PLANAR INTERMEDIATE LAYERS

PackAssistant arranges the parts in layers with planar intermediate layers. The parts can be arranged in two ways: with or without overlap in the direction in which the parts will be taken out of the container. The software ensures that in either case the arrangement of the parts is as regular as possible to allow easy loading and unloading. The exact selection of the minimum distance between the parts enables a realistic and case-specific solution.
LOADING WITH COMPARTMENTS

PackAssistant arranges the parts in layers - as before - and additionally in compartments. The software allows for standard rectangular, trapezoidal and hexagonal compartments. With a lot of parts, the trapezoidal compartment, in particular, provides a much higher packing density, compared with rectangular compartments. The extra effort for design and handling of trapezoidal compartments is minimal.

LOADING WITH FLEXIBLE OR WITHOUT INTERMEDIATE LAYERS

In addition to the case of rigid dividers between layers (described above), PackAssistant can also handle the use of flexible separators. Such intermediate layers are typically foam package or are made from plastic foils or fleece materials and their thickness can be specified in millimetres. Should a material thickness of zero millimetres be specified, then PackAssistant will arrange the parts directly on top of one another.
LOADING IN STACKS

In addition to arranging objects in layers, PackAssistant can also load them in stacks. This is particularly suitable for thin-walled objects, whereby stacking can be vertically or slanted. The example above shows a slanted stacking.

FILLING WITH BULK GOODS

Small parts are often not put into a container in an orderly fashion but are simply allowed to fall from a conveyor belt into a container. PackAssistant can estimate how many parts fit into a container by simulating the physical behaviour of each part, i.e. by simulating gravity, velocity and collision among parts.
Packing reports are generated as Microsoft Word documents. Detailed images make it easy for the user to put the suggested packing instructions into practice.

The results can be exported as CAD-datasets in various formats.
DISPLAY OF RESULTS AND 3D-CAD-OUTPUT

PackAssistant provides meaningful 3D images within a packing report, which in particular allows the ideal basis for the creation of specific commercial quotes. The customer can see straightaway how the objects should be arranged in the available space. Until now this had to be done by laborious drawings or graphs.

Packing reports are generated as Microsoft Word documents. You can adjust the layout of the document to the needs of your company. Additionally the results can be exported as CAD-datasets in the formats JT, STEP and VRML. This allows a more descriptive representation of the packing arrangement to be created, which can, when desired, also be included within the packing report. A 3D-viewer software can show individual sections and views of the packing arrangement.

TECHNICAL SPECIFICATIONS

• PackAssistant is offered as floating and nodelocked licence.
• FlexNet Publisher is used for software licensing.
• PackAssistant is available in English and German.
• Microsoft Excel and Word are required for reading container lists and creating packing reports.
• The parts can be imported in either of the formats JT (*.jt), STEP (*.stp, *.step), VRML (*.wrl) and STL (*.stl).
• Results can be exported as JT, STEP and VRML.
Fraunhofer SCAI has an established track record in the application of discrete methods to 2D and 3D arrangement problems. It is responsible for PackAssistant’s optimization kernel, building on its comprehensive algorithmic know-how in the area of optimization and packing.

Fraunhofer Institute for Algorithms and Scientific Computing SCAI
Schloss Birlinghoven
53754 Sankt Augustin, Germany

Phone +49 2241 14-1503
Fax +49 2241 14-2656
packassistant@scai.fraunhofer.de

www.packassistant.com

The graphical user interface, all interfaces and data management are provided by SOLVE-IT, a member of the MVI Group which specializes in software solutions for the automotive industry.

MVI SOLVE-IT GmbH
Moosacher Str. 58 // Entrance B
80809 Munich, Germany

Phone +49 89 318 13-0
Fax +49 89 318 13-222
packassistant@solve-it-mvi.com

Fraunhofer SCAI’s distributor:
scapos AG
Schloss Birlinghoven
53754 Sankt Augustin, Germany
Phone +49 2241 14-2820
Fax +49 2241 14-2817
info@scapos.com

www.packassistant.com